Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure.
نویسندگان
چکیده
Eu- and Li-doped yttrium oxide nanocrystals [Y2-xO3; Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2-xO3; Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40-220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2-xO3; Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 ± 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605-617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radiotransparent device recorded scintillation intensities that tracked linearly with total radiation exposure, highlighting its capability to provide alternately accurate dosimetry measurements for both diagnostic imaging (80 kVp) and radiation therapy treatment (225 kVp).
منابع مشابه
Dual energy converting nano-phosphors: upconversion luminescence and X-ray excited scintillation from a single composition of lanthanide-doped yttrium oxide.
We report an upconverting nanomaterial composition, [Y(2)O(3); Yb (2%), Er (1%)], that converts both X-ray and high-fluence NIR irradiation to visible light. This composition is compared to a higher Yb(3+) doped composition, [Y(2)O(3); Yb (10%), Er (1%)], that displays diminished visible X-ray scintillation, but shows enhanced red wavelength centered upconversion emission. These nanocrystals ha...
متن کاملPHASE STABILITY AND CONDUCTIVITY OF δ-Bi2O3 WITH MIXTURE OF YTTRIUM AND YTTERBIUM OXIDES
In this research Bi2O3 was doped with mixtures of 8, 10, 12 and 18 mol % of Y2O3 and Yb2O3 to stabilizing the δ-Bi2O3 phase using solid state reaction technique. Experimental samples were fabricated by isostatic pressing and sintering at 850 °C for 24 h. X-ray diffraction analysis detected cubic phase (δ-Bi2O3) as the sole stable crystalline phase in samples including 12 and 18 mol % of Y2O3 an...
متن کاملساخت نانوبلور لیتیوم تترا بورات آلاییده با منیزیم به روش احتراقی و بررسی رفتار لومینسانس آن
Lithium tetraborate nanoparticles were synthesized by combustion method. The shape and size of nanoparticles were determined by scanning electron microscopy (SEM). X-ray diffraction pattern (XRD) confirmed the formation of lithium tetraborate nanocrystals. Thermoluminescence (TL) glow curve of the produced nanoparticles following irradiating with gamma radiation demonstrates five overlapping gl...
متن کاملSynthesis, characterization and sonophotocatalytic degradation of an azo dye on Europium doped cadmium selenide nanoparticles
In this study, Eu-doped CdSe nanoparticles with variable Eu3+ content were synthesized by a simple sonochemical method. Eu3+ substitution into the structure of CdSe resulted in a material with new physical properties, composition and morphology. The synthesized nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscop...
متن کاملOptical, Photoluminescence and Thermoluminescence Properties Investigation of ZnO and Mn Doped ZnO Nanocrystals
ZnO and ZnO: Mn nanocrystals synthesized via reverse micelle method. The structural properties nanocrystals were investigated by XRD and Transmission electron microscopy (TEM). The XRD results indicate that the synthesized nanocrystals had a pure wurtzite (hexagonal phase) structure. The various optical properties of these nanocrystals such as optical band gap energy, refractive index, dielectr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 6 10 شماره
صفحات -
تاریخ انتشار 2014